11 research outputs found

    Principled deep learning approaches for learning from limited labeled data through distribution matching

    Get PDF
    Les réseaux de neurones profonds ont démontré un fort impact dans de nombreuses applications du monde réel et ont atteint des performances prometteuses dans plusieurs domaines de recherche. Cependant, ces gains empiriques sont généralement difficiles à déployer dans les scénarios du monde réel, car ils nécessitent des données étiquetées massives. Pour des raisons de temps et de budget, la collecte d'un tel ensemble de données d'entraînement à grande échelle est irréaliste. Dans cette thèse, l'objectif est d'utiliser le distribution matching pour développer de nouvelles approches d'apprentissage profond pour la prédiction de peu de données étiquetées. En particulier, nous nous concentrons sur les problèmes d'apprentissage multi-tâches, d'apprentissage actif et d'adaptation au domaine, qui sont les scénarios typiques de l'apprentissage à partir de données étiquetées limitées. La première contribution consiste à développer l'approche principale de l'apprentissage multi-tâches. Concrètement, on propose un point de vue théorique pour comprendre le rôle de la similarité entre les tâches. Basé sur les résultats théoriques, nous re-examinons l'algorithme du Adversarial Multi-Task Neural Network, et proposons un algorithme itératif pour estimer le coefficient des relations entre les tâches et les paramètres du réseaux de neurones. La deuxième contribution consiste à proposer une méthode unifiée pour les requêtes et les entraînements dans l'apprentissage actif profond par lots. Concrètement, nous modélisons la procédure interactive de l'apprentissage actif comme le distribution matching. Nous avons ensuite dérivé une nouvelle perte d'entraînement, qui se décompose en deux parties : l'optimisation des paramètres du réseaux de neurones et la sélection des requêtes par lots. En outre, la perte d'entraînement du réseau profond est formulée comme un problème d'optimisation min-max en utilisant les informations des données non étiquetées. La sélection de lots de requêtes proposée indique également un compromis explicite entre incertitude et diversité. La troisième contribution vise à montrer l'incohérence entre le domain adversarial training et sa correspondance théorique supposée, basée sur la H-divergence. Concrètement, nous découvrons que la H-divergence n'est pas équivalente à la divergence de Jensen-Shannon, l'objectif d'optimisation dans les entraînements adversaires de domaine. Pour cela, nous établissons un nouveau modèle théorique en prouvant explicitement les bornes supérieures et inférieures du risque de la cible, basées sur la divergence de Jensen-Shannon. Notre framework présente des flexibilités inhérentes pour différents problèmes d'apprentissage par transfert. D'un point de vue algorithmique, notre théorie fournit une guidance de l'alignement conditionnel sémantique, de l'alignement de la distribution marginale et de la correction du label-shift marginal. La quatrième contribution consiste à développer de nouvelles approches pour agréger des domaines de sources avec des distributions d'étiquettes différentes, où la plupart des approches récentes de sélection de sources échouent. L'algorithme que nous proposons diffère des approches précédentes sur deux points essentiels : le modèle agrège plusieurs sources principalement par la similarité de la distribution conditionnelle plutôt que par la distribution marginale ; le modèle propose un cadre unifié pour sélectionner les sources pertinentes pour trois scénarios populaires, l'adaptation de domaine avec une étiquette limitée sur le domaine cible, l'adaptation de domaine non supervisée et l'adaptation de domaine non supervisée partielle par étiquette.Deep neural networks have demonstrated a strong impact on a wide range of tasks and achieved promising performances. However, these empirical gains are generally difficult to deploy in real-world scenarios, because they require large-scale hand-labeled datasets. Due to the time and cost budget, collecting such large-scale training sets is usually infeasible in practice. In this thesis, we develop novel approaches through distribution matching to learn limited labeled data. Specifically, we focus on the problems of multi-task learning, active learning, and domain adaptation, which are the typical scenarios in learning from limited labeled data. The first contribution is to develop a principled approach in multi-task learning. Specifically, we propose a theoretical viewpoint to understand the importance of task similarity in multi-task learning. Then we revisit the adversarial multi-task neural network and propose an iterative algorithm to estimate the task relation coefficient and neural-network parameters. The second contribution is to propose a unified and principled method for both querying and training in deep batch active learning. We model the interactive procedure as distribution matching. Then we derive a new principled approach in optimizing neural network parameters and batch query selection. The loss for neural network training is formulated as a min-max optimization through leveraging the unlabeled data. The query loss indicates an explicit uncertainty-diversity trade-off batch-selection. The third contribution aims at revealing the incoherence between the widely-adopted empirical domain adversarial training and its generally assumed theoretical counterpart based on H-divergence. Concretely, we find that H-divergence is not equivalent to Jensen-Shannon divergence, the optimization objective in domain adversarial training. To this end, we establish a new theoretical framework by directly proving the upper and lower target risk bounds based on the Jensen-Shannon divergence. Our framework exhibits flexibilities for different transfer learning problems. Besides, our theory enables a unified guideline in conditional matching, feature marginal matching, and label marginal shift correction. The fourth contribution is to design novel approaches for aggregating source domains with different label distributions, where most existing source selection approaches fail. Our proposed algorithm differs from previous approaches in two key ways: the model aggregates multiple sources mainly through the similarity of conditional distribution rather than marginal distribution; the model proposes a unified framework to select relevant sources for three popular scenarios, i.e., domain adaptation with limited label on the target domain, unsupervised domain adaptation and labels partial unsupervised domain adaption

    A Principled Approach for Learning Task Similarity in Multitask Learning

    Full text link
    Multitask learning aims at solving a set of related tasks simultaneously, by exploiting the shared knowledge for improving the performance on individual tasks. Hence, an important aspect of multitask learning is to understand the similarities within a set of tasks. Previous works have incorporated this similarity information explicitly (e.g., weighted loss for each task) or implicitly (e.g., adversarial loss for feature adaptation), for achieving good empirical performances. However, the theoretical motivations for adding task similarity knowledge are often missing or incomplete. In this paper, we give a different perspective from a theoretical point of view to understand this practice. We first provide an upper bound on the generalization error of multitask learning, showing the benefit of explicit and implicit task similarity knowledge. We systematically derive the bounds based on two distinct task similarity metrics: H divergence and Wasserstein distance. From these theoretical results, we revisit the Adversarial Multi-task Neural Network, proposing a new training algorithm to learn the task relation coefficients and neural network parameters iteratively. We assess our new algorithm empirically on several benchmarks, showing not only that we find interesting and robust task relations, but that the proposed approach outperforms the baselines, reaffirming the benefits of theoretical insight in algorithm design

    Information Gain Sampling for Active Learning in Medical Image Classification

    Full text link
    Large, annotated datasets are not widely available in medical image analysis due to the prohibitive time, costs, and challenges associated with labelling large datasets. Unlabelled datasets are easier to obtain, and in many contexts, it would be feasible for an expert to provide labels for a small subset of images. This work presents an information-theoretic active learning framework that guides the optimal selection of images from the unlabelled pool to be labeled based on maximizing the expected information gain (EIG) on an evaluation dataset. Experiments are performed on two different medical image classification datasets: multi-class diabetic retinopathy disease scale classification and multi-class skin lesion classification. Results indicate that by adapting EIG to account for class-imbalances, our proposed Adapted Expected Information Gain (AEIG) outperforms several popular baselines including the diversity based CoreSet and uncertainty based maximum entropy sampling. Specifically, AEIG achieves ~95% of overall performance with only 19% of the training data, while other active learning approaches require around 25%. We show that, by careful design choices, our model can be integrated into existing deep learning classifiers.Comment: Paper accepted at UNSURE 2022 workshop at MICCAI 202
    corecore